IBM) y el Marshall Space Flight Center de NASA anunciaron una colaboración para utilizar la tecnología de inteligencia artificial (IA) de IBM con el fin de descubrir nuevos conocimientos en el enorme caudal de datos científicos geoespaciales y de la Tierra de la NASA. El trabajo conjunto aplicará por primera vez la tecnología de modelos fundacionales de IA a los datos de los satélites de observación de la Tierra de la NASA.
Los modelos fundacionales son tipos de modelos de IA que se entrenan en un amplio conjunto de datos no etiquetados, que se pueden utilizar para diferentes tareas y permiten aplicar información sobre una situación a otra. Estos modelos avanzaron rápidamente en el campo de la tecnología de procesamiento del lenguaje natural (PLN) en los últimos cinco años, e IBM es pionera en aplicaciones de modelos fundacionales más allá del lenguaje.
Las observaciones de la Tierra que permiten a los científicos estudiar y monitorear nuestro planeta se están recopilando a un ritmo y volumen sin precedentes. Se requieren enfoques nuevos e innovadores para extraer conocimientos de estos vastos recursos de datos. El objetivo de este trabajo es proporcionar a los investigadores una forma más fácil para analizar y obtener información de estos grandes conjuntos de datos. La tecnología de modelos fundacionales de IBM tiene el potencial de acelerar el descubrimiento y el análisis de estos datos para avanzar rápidamente en la comprensión científica de la Tierra y la respuesta a los problemas relacionados con el clima.
Los modelos fundacionales demostraron su eficacia en el procesamiento del lenguaje natural y ahora llegó el momento de expandirlos a nuevos dominios y modalidades importantes para los negocios y la sociedad”, afirma Raghu Ganti, investigador principal de IBM. “La aplicación de modelos fundacionales a los datos geoespaciales, secuencias de eventos, series de tiempo y otros factores no lingüísticos dentro de los datos de las Ciencias de la Tierra permitirán que conocimientos e informaciones muy valiosas estén disponibles para un grupo mucho más amplio de investigadores, empresas y ciudadanos. En última instancia, podría facilitar que un mayor número de personas trabajen en algunos de nuestros problemas climáticos más apremiantes

															


